Maximum allowable force on a safety harness cable to discriminate a successful from a failed balance recovery.

نویسندگان

  • Marc-André Cyr
  • Cécile Smeesters
چکیده

A safety harness system is essential to ensure participant safety in experiments at the threshold of balance recovery where avoiding a fall is not always possible. The purpose of this study was to propose a method to determine the maximum allowable force on a safety harness cable to discriminate a successful from a failed balance recovery. Data from 12 younger adults, who participated in experiments to determine the maximum forward lean angles that participants could be suddenly released from and still recover balance using three different limits on the number of steps, were used. For each participant, the coefficients of an asymptotic exponential regression, between the maximum vertical force on the safety harness cable and the initial lean angle at each trial, were evaluated by a least squares method. A proposed threshold for the maximum allowable vertical force of five force constants ensured that the initial lean angle reached 99% of its steady state value with respect to its initial value. It should thus discriminate well a successful (below the threshold) from a failed (above the threshold) balance recovery. Furthermore, although the amplitude of the horizontal forces should not be neglected in safety harness system designs, the contributions of the medial-lateral and anterior-posterior forces can be neglected in experiments at the threshold of balance recovery. Finally, although our five force constants method could be used, the actual value obtained for the maximum allowable vertical force may vary with other safety harness systems and postural perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic recognition of falls in gait-slip training: Harness load cell based criteria.

Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by...

متن کامل

A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study

A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...

متن کامل

Ipsilateral Scapular Cutaneous Anchor System: An alternative for the harness in body-powered upper-limb prostheses

BACKGROUND Body-powered prosthesis users frequently complain about the poor cosmesis and comfort of the traditional shoulder harness. The Ipsilateral Scapular Cutaneous Anchor System offers an alternative, but it remains unclear to what extent it affects the perception and control of cable operation forces compared to the traditional shoulder harness. OBJECTIVE To compare cable force percepti...

متن کامل

Effects of carbon dioxide inhalation on psychomotor and mental performance during exercise and recovery.

On separate days, 6 highly trained participants performed psychomotor tests while breathing for 60 min 3 carbon dioxide (CO(2)) mixtures (room air, 3% CO(2), or 4% CO(2)) prior to, between, and following two 15-min treadmill exercise bouts (70% VO(2)(max)). Each individual was extensively practiced (at least 4 days) before testing began, and both gas conditions and order of tasks were counterba...

متن کامل

Maximum Allowable Load On Wheeled Mobile Manipulators (RESEARCH NOTE)

This paper develops a computational technique for finding the maximum allowable load of mobile manipulators for a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 42 10  شماره 

صفحات  -

تاریخ انتشار 2009